Introduction to NEWBORN SEQUENCING PROJECTS

Biên Soạn: ĐV SHPT, BVĐK Gia Đình

The use of **genome or exome sequencing in newborns** is expanding rapidly, driven by the promise of **early diagnosis, prevention, and precision medicine**. These **Newborn Sequencing Projects** are reshaping our understanding of pediatric genetic disorders—but not without serious technical, scientific, and ethical hurdles.

The following is a detailed breakdown of their successes and challenges:

1. *SUCCESS STORIES of Newborn Sequencing Projects*

1.1. Early Diagnosis of Rare Disorders

- **Projects like BabySeq (USA)** and **NC NEXUS (North Carolina)** demonstrated that sequencing can detect **actionable genetic disorders** before symptoms appear.
- Disorders identified included primary immunodeficiencies, cardiomyopathies, metabolic disorders, and cancer predisposition syndromes.
- In the **BabySeq study**, ~11% of sequenced infants had a **pathogenic or likely pathogenic variant** in a gene with established clinical actionability (e.g., BRCA2, TTN).

1.2. Improved Outcomes with Preemptive Treatment

- Early identification of metabolic diseases (e.g., MCAD deficiency, biotinidase deficiency) allowed immediate dietary changes or supplements—preventing crises or neurological damage.
- Some pilot studies show that pre-symptomatic treatment **improves neurodevelopmental outcomes** compared to post-symptom diagnosis.

1.3. Expansion Beyond Traditional Screening Panels

- Conventional newborn screening (NBS) panels are limited to ~30–70 conditions (via biochemical assays).
- Genomic sequencing can detect hundreds of additional Mendelian conditions, including those not detectable by metabolite-based screening (e.g., some congenital deafness or retinal diseases).

1.4. Uncovering Carrier Status for Reproductive Planning

• In some studies, families received **carrier information** that was later used for **reproductive decisions**, such as IVF with PGD or prenatal diagnosis in future pregnancies.

1.5. National Programs and Scaling Up

- The **UK's Newborn Genomes Programme** (launched in 2023, aiming to sequence 100,000 babies) aims to integrate WGS with public health infrastructure.
- Israel and several Nordic countries are piloting similar programs with promising public health engagement and data interoperability.

2. TECHNICAL & SCIENTIFIC CHALLENGES

2.1. Variant Interpretation in Asymptomatic Populations

- Most newborns are healthy. Variants of uncertain significance (VUS) are common but hard to act on.
- Many genes have **incomplete penetrance**, **variable expressivity**, or **late-onset** risks (e.g., BRCA2 in a baby).
- Current databases (e.g., ClinVar, gnomAD) are **incomplete**, especially for non-European ancestries.

2.2. Analytical & Diagnostic Sensitivity

- Whole-exome sequencing (WES) misses non-coding variants, structural variants, and mitochondrial mutations.
- Whole-genome sequencing (WGS) can detect more, but at higher cost and with more incidental findings.
- Some conditions (e.g., fragile X syndrome, repeat expansion diseases) are still poorly detected with standard NGS.

2.3. Technical Limitations in Newborn Samples

- Dried blood spots (DBS) used for traditional NBS can pose challenges for DNA extraction and quality.
- Blood volume and consent logistics can also limit sequencing in preterm or ill neonates.

2.4. Data Storage and Analysis at Scale

- Sequencing 1 million newborns (e.g., UK Genomes Programme) = petabytes of raw data.
- Requires robust cloud computing, data privacy infrastructure, and long-term storage solutions.

2.5. Ethical and Consent Issues

- **Parental informed consent** for genomic sequencing in newborns is complex—particularly for adult-onset or carrier conditions.
- Should results about conditions like **Alzheimer's disease**, **Huntington's**, or **BRCA1** be disclosed at birth?
- How to recontact families as variants are reclassified or new therapies emerge?

2.6. Equity and Ancestry Gaps

- Most sequencing databases are skewed toward **European ancestries**, making variant interpretation harder in African, Asian, or Indigenous populations.
- Risk of genomic healthcare disparity if projects aren't inclusive or affordable for all.

A Notable Current Projects

Project / Country	Approach	Notable Aim
BabySeq (USA)	WES	Feasibility of integrating genomics in healthy infants
NC NEXUS (USA)	WES	Compare traditional NBS vs. sequencing
UK Newborn Genomes	WGS (100K infants)	Evaluate impact of WGS in public health settings
Australian Mackenzie's Mission	WGS	Carrier screening in parents preconceptionally
BeginNGS (USA)	Rapid WGS	Real-time newborn genomic screening with early Rx

3. 🛞 CONCLUSION

Newborn sequencing projects are revolutionizing pediatric and preventive medicine, uncovering treatable conditions early and empowering long-term health planning. However, they face serious technical and ethical complexities, especially regarding variant interpretation, equity, consent, and data scalability.

The future lies in:

- Improving variant annotation
- Educating clinicians and parents
- Expanding diverse genomic reference cohorts
- Developing better guidelines for actionability and reporting

Newborn Sequencing Projects

SUCCESSES

Early diagnosis of rare, actionable disorders

Improved outcomes from preemptive treatment

Expansion beyond traditional screening panels

Uncovering carrier status for reproductive planning

National programs and scaling up

CHALLENGES

Variant interpretation in asymptomatic popullations

Analytical & diagnostic sensitivity

Technical limitations in newborn samples

Data storage and analysis at scale

Ethical and consent issues

Equity and ancestry gaps

ÐV SHPT – BVÐK GIA

SOURCES:

- Berg JS et al. (2017). "An Exome Sequencing Study to Assess the Role of Rare Genetic Variation in Pediatric Disorders." Genetics in Medicine, 19(9): 1045–1053. https://doi.org/10.1038/gim.2016.222
- Bick D et al. (2023). "BeginNGS: Rapid newborn genome sequencing to end the diagnostic odyssey."
 American Journal of Human Genetics, 110(1): 55–64.

https://doi.org/10.1016/j.ajhg.2022.11.008

 Goldenberg AJ et al. (2019). "NC NEXUS: Addressing the challenges of genomic sequencing in newborns." Pediatrics, 144(Suppl 6): S27–S35. https://doi.org/10.1542/peds.2019-1800E

- Samuel GN et al. (2021). "Mackenzie's Mission: a pilot study of reproductive genetic carrier screening in Australia."
 European Journal of Human Genetics, 29(1): 104–113. https://doi.org/10.1038/s41431-020-00705-4
- Milko LV et al. (2019). "Ethical challenges in genomic newborn screening: Implications for clinical practice and public policy." Pediatrics, 144(S6): S36–S42. https://doi.org/10.1542/peds.2019-1800F
- Ceyhan-Birsoy O et al. (2019). "Interpretation of genomic sequencing results in healthy and ill newborns: results from the BabySeq Project." American Journal of Human Genetics, 104(1): 76–93. https://doi.org/10.1016/j.ajhg.2018.11.016
- 7. Kingsmore SF et al. (2022). "A genome sequencing program for newborns: Stakeholder views and priorities."
 Nature Medicine, 28(3): 475–482. https://doi.org/10.1038/s41591-022-01704-4
- Green RC et al. (2016). "Clinical Sequencing Exploratory Research Consortium: Accelerating evidence-based practice of genomic medicine." American Journal of Human Genetics, 98(6): 1051–1066. https://doi.org/10.1016/j.ajhg.2016.04.011
- ACMG Recommendations (2021). "Points to consider: Ethical, legal, and psychosocial implications of genetic testing in children and adolescents."
 American College of Medical Genetics and Genomics. https://www.acmg.net