

Basic Concepts to Cytogenomics (part ii)

Tuan Tran, MD, PhD. Unit of Genetic & Genomic Medicine, Family Hospital, Da Nang

7. CHROMOSOME ABNORMALITY: When the Cellular Printer Jams

Think of the human body as a massive construction project based on a 46-volume encyclopedia. **Meiosis**—the specialized cell division that creates sperm and eggs—is the process of photocopying those volumes for the next generation. It is a high-stakes job, but sometimes the "cellular intern" running the copier falls asleep, leading to a chromosomal abnormality in the **conceptus** (the beginning of a new human).

7.1. The "How & When" Scenarios

- **Scenario A: The Constitutional Error (The Foundation Flaw)** Imagine a contractor realizes the blueprint for a building has an extra bathroom on every single floor because the original master copy was wrong. This is a **constitutional abnormality**. Because the error was present in the very first cell (the zygote), it is baked into the foundation and exists in every cell of the body.
- **Scenario B: The Mosaicism (The Patchwork Renovation)** Now, imagine the original blueprint was perfect, but halfway through building the second floor, a worker accidentally starts using a different set of plans for just the West Wing. You end up with a house that is 70% normal and 30% "experimental." This is **constitutional mosaicism**. A classic clinical example is **Mosaic Down Syndrome**, where some cells have 46 chromosomes and others have 47; these individuals often have milder clinical features because the "normal" cells help pick up the slack.

7.2. The "Why It Breaks" Scenarios (Pathogenetic Mechanisms)

Why does having the wrong amount of DNA distort the growth pattern from zygote to fetus? It comes down to five main glitches:

i. **The Dosage Effect (The Recipe Disaster):** Imagine baking a cake. If the recipe calls for two eggs, but you put in three (**trisomy**) or one (**monosomy**), the chemical structure fails.

- *Clinical Detail:* In **Williams Syndrome**, a tiny "microdeletion" (loss of dosage) on chromosome 7q11.23 removes the *ELN* gene. Without enough elastin protein, patients develop supravalvular aortic stenosis (narrowing of the large blood vessel from the heart).

ii. **Direct Damage (The Torn Page):** A chromosome breaks and reattaches, disrupting a gene.

- *Clinical Detail:* In some cases of **Duchenne Muscular Dystrophy**, a translocation break occurs right inside the massive *DMD* gene on the X chromosome, stopping the production of dystrophin entirely.

iii. The Imprinting Glitch (The "Parental Source" Error): The body cares if a volume came from Mom or Dad.

- *Clinical Detail:* If a specific region of chromosome 15 is missing from the **Father**, the child gets **Prader-Willi Syndrome** (insatiable hunger). If the exact same piece is missing from the **Mother**, the child gets **Angelman Syndrome** (frequent laughter and jerky movements).

iv. The Position Effect (The Bad Neighborhood): A gene is moved to a new environment where it acts inappropriately.

- *Clinical Detail:* In **Aniridia** (absence of the iris), the *PAX6* gene might be perfectly intact, but a translocation moves it far away from its "control switch" (enhancer). Even though the gene is there, it can't "hear" the instructions to turn on.

v. The Combo Deal: A mix of any of the above.

7.3. Autosomal Imbalance: The High-Stakes Volumes

The autosomes (1–22) carry instructions for your heart, limbs, and organs.

- **The "Self-Destruct" Rule:** Loss of material (**monosomy**) is usually fatal. Almost all autosomal monosomies result in early spontaneous abortion.
- **The Survivors: Trisomy 21 (Down Syndrome)** is the most common survivor. However, even "milder" survivable imbalances like **Trisomy 18 (Edwards Syndrome)** often present with severe heart defects and clenched fists with overlapping fingers, with many infants not surviving past the first year. Because the brain is the body's most complex computer, intellectual disability is nearly universal in these survivors.

7.4. Sex Chromosome (Gonosome) Imbalance: The "Buffer" Zone

Errors in the X and Y chromosomes are much less "dramatic" because of **X-inactivation**.

- **The Office Scenario:** In a **47,XXY (Klinefelter Syndrome)** office, the worker has three computers but puts two in the drawer.
- **The Result:** Unlike autosomal trisomies, many men with Klinefelter or women with **47,XXX** are never diagnosed because the "dosage" is buffered. They may only discover the "glitch" when facing infertility or subtle learning shifts in adulthood.

7.5. Research: Turning "Oops" into "Eureka!"

Chromosomal "accidents" are nature's roadmap.

- **The Detective Scenario:** Finding a child with a deletion on chromosome 13 who also had an eye tumor led researchers to the **Retinoblastoma (RB1)** gene. It was like finding a missing page in a manual and realizing that page contained the "How to Stop Tumors" instructions.
- **The Neocentromere Mystery:** Scientists once found a "marker" chromosome that should have been lost because it had no anchor point (centromere). It had "improvised" a functional one. This **neocentromere** discovery is now helping us design **Human Artificial Chromosomes (HACs)**—essentially custom-built "delivery trucks" for gene therapy.

Summary: We used to find the symptoms first (**Phenotype-first**). Today, with microarrays, we often find the DNA "typo" first (**Genotype-first**), uncovering the cause of developmental delays before a specific syndrome is even named.

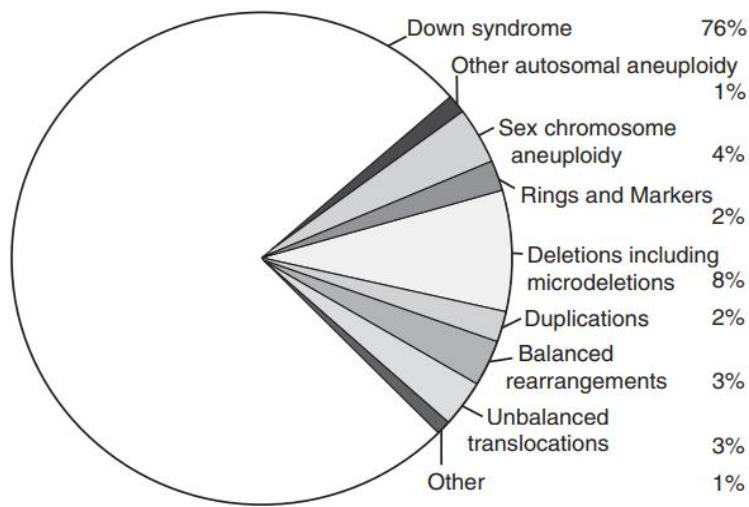
7.6. Ten Examples of Autosomal Abnormalities

Autosomal imbalances generally have a more "devastating" effect on morphogenesis. While most lead to early pregnancy loss, these are the primary ones seen in clinical practice or later stages of pregnancy.

Condition	Karyotype	Mechanism	Clinical Characteristics
Down Syndrome	47,XX/XY,+21	Full Trisomy	Hypotonia, flat facial profile, up-slanting palpebral fissures, Simian crease, and varying intellectual disability.
Edwards Syndrome	47,XX/XY,+18	Full Trisomy	Microcephaly, clenched fists with overlapping fingers, "rocker-bottom" feet, and severe heart defects.
Patau Syndrome	47,XX/XY,+13	Full Trisomy	Holoprosencephaly, polydactyly (extra fingers), cleft lip/palate, and microphthalmia (small eyes).
Cri-du-chat Syndrome	46,XX/XY,del(5p)	Deletion	"Cat-like" high-pitched cry in infancy, microcephaly, and severe developmental delay.
Wolf-Hirschhorn	46,XX/XY,del(4p)	Deletion	"Greek warrior helmet" facial appearance, prominent glabella, and seizures.

Condition	Karyotype	Mechanism	Clinical Characteristics
DiGeorge / VCFS	46,XX/XY,del(22q11.2)	Microdeletion	Cleft palate, congenital heart defects (conotruncal), and immune deficiency (thymic aplasia).
Williams Syndrome	46,XX/XY,del(7q11.23)	Microdeletion	"Elfin" facies, outgoing/cocktail party personality, and supravalvular aortic stenosis.
Warkany Syndrome 2	47,XX/XY,+8 (Mosaic)	Mosaic Trisomy	Deep plantar furrows (creases on feet), long slender trunk, and joint contractures.
Prader-Willi	46,XX/XY,del(15q11-13)	Imprinting (Pat)	Neonatal hypotonia followed by hyperphagia (insatiable hunger), obesity, and small hands/feet.
Angelman Syndrome	46,XX/XY,del(15q11-13)	Imprinting (Mat)	"Happy Puppet" demeanor, frequent laughter, jerky movements (ataxia), and severe speech delay.

7.7. Ten Examples of Gonosomal (Sex Chromosome) Abnormalities


Because of **X-inactivation** and the low gene density of the Y chromosome, these individuals often have a much milder physical phenotype but may face issues with fertility and neurological functioning.

Condition	Karyotype	Mechanism	Clinical Characteristics
Turner Syndrome	45,X	Monosomy	Short stature (SHOX gene), webbed neck, "streak" ovaries (infertility), and coarctation of the aorta.
Klinefelter Syndrome	47,XXY	Trisomy (Male)	Tall stature, gynecomastia, small testes, and hypergonadotropic hypogonadism (infertility).
Triple X Syndrome	47,XXX	Trisomy (Female)	Usually asymptomatic; tall stature, increased risk of learning disabilities, and speech delay.
Jacob's Syndrome	47,XYY	Trisomy (Male)	Tall stature, severe cystic acne in adolescence, and increased risk of behavioral/social challenges.
Tetrasomy X	48,XXXX	Polypliody	Intellectual disability (mild-moderate), radioulnar synostosis, and facial dysmorphism.

Condition	Karyotype	Mechanism	Clinical Characteristics
Pentasomy X	49,XXXXX	Polyplody	Severe intellectual disability, short stature, and multiple skeletal malformations.
XXYY Syndrome	48,XXYY	Tetrasomy	Similar to Klinefelter but with more significant behavioral issues and developmental delay.
49,XXXXY	49,XXXXY	Pentasomy	Once thought to be a variant of Klinefelter; presents with severe disability and "Fraccaro" facies.
De la Chapelle	46,XX (Male)	Translocation	Phenotypically male but sterile; caused by <i>SRY</i> gene translocating from Y to X.
Swyer Syndrome	46,XY (Female)	Mutation/Deletion	Phenotypically female but with non-functional streak gonads; caused by loss of <i>SRY</i> function.

Note how the severity increases as we add more X chromosomes (e.g., from 47,XXX to 49,XXXX). Even with X-inactivation, the "escapee" genes in the Pseudoautosomal Regions (PARs) cause a cumulative dosage effect that interferes with brain and bone development.

FIGURE S1: The relative proportions of different cytogenetic categories in 835 karyotypically abnormal individuals of a mentally retarded population in South Carolina studied in 1989–1994 (Phelan et al., 1996).

If the exercise were to be repeated now, a lesser fraction due to Down syndrome might possibly be expected, due to prenatal diagnosis and pregnancy termination; and a new category would be needed for microduplications and microdeletions detected on microarrays.

TABLE S1. The Spectrum of Effects, in Broad Outline, Resulting from Constitutional Chromosomal Abnormality

1. Devastation of blastogenesis, with transient implantation or nonimplantation of the conceptus
2. Devastation of embryogenesis, with spontaneous abortion, usually in the first trimester
3. Major disruption of normal intrauterine morphogenesis, with stillbirth or early neonatal death
4. Major disruption of normal intrauterine morphogenesis, but with some extrauterine survival
5. Moderate distortion of normal intrauterine development, with substantial extrauterine survival and severe mental retardation
6. Mild distortion of normal intrauterine development, with substantial extrauterine survival, and considerable intellectual compromise
7. Minimal physical phenotypic effect, varying degrees of intellectual compromise; possible compromise of fertility
8. No discernible physical phenotypic effect; cognitive function within the normal range, but less than expected from the family background